COMPUTER SYSTEMS LABORATORY
l

STANFORD UNIVERSITY STANFORD, CA 94305-4055

Microsupercomputers: Design and
Implementation

Stanford University
Computer Systems Laboratory

Semi-Annual Technical Report
Defense Advanced Research Projects Agency

For the period of October 1990 - March 1991

Contract Number: N00014-87-K-0828

DTIC

o ELECTE ¢

~E Princi i
N MAR27 1991] cipal vestigator
m & el John L. Hennessy
E} i
Associate Investigator
Mark A. Horowitz
PR N S A
Appiors T opnmee coeaien
___________L\L. ST S '

QO i . o o
ﬁ) .g- e ror NS oA

Semi-Annual Technical Progress Report

October 1990- March 1991

Contract No. N00014-87-K-0828
Order No. 1133
R & T Project Code: 4331685

This work is supported by the Defense Advanced Research Projects Agency and the Office
of Naval Research.

The views and conclusions contained in this document are those of the authors and should

not . interpreted as representing official policies. either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

Table of Contents

1. Executive Summary, Goals and Accomplishments..............oocoiiiiin . 1
2. TeChnICAl PrC IS ittt ettt 3
2.1 Parallel Processor ArchiteCtureccoiiiiiiiiiiiii i, 3
2.1.1 The DASHHardwareo.coiiiiiiiiiiiiiiiiiiiie 3
2.1.2 The DASH Operating System.......cccooviiiiiiiiiiiiiienniinnn. 4
2.1.3 Basic Architectural Studiesoooiiiiiiiii 5
2.1.4 Simulation and Performance Debugging Tools 7
2.2, Parallel Software ... 8
2.2.1 Parallel Applications Studies ... 8
2.2.2 DataDependence AnalysiS.........oooviiiiiiiiiiiiiii, 9
2.2.3 Automatic Blocking.....cooooiiiviiiii 10
2.2.4 Jade Researchc.ooiiiiiiiiiiiii i 11
2.3, Uniprocessor Architecture......coo.ccoiiiiiiiiiiniiiiiiniin 12
2.3.1 Super-Scalar COmMPULETSoieiiiviii i 12
2.4, Computer-Aided Design........cooooiiiiiiiiiiiiiiiii 12
241 SIMUlatioN Lo e 12
3. Publications, Presentations. REPOTTSooviiiiiiiiiiiii i 14
A PrOJECt Staff 17

| e

!A "/

ATTOsIVN }“.
NTIS (Ciran
Diic ~:‘3

Avany :-.

‘
————— ORI,

P myn nms‘

tib t.c‘l

1. Executive Summary, Goals and Accomplishments

DASH Parallel Processor: Our primary focus over the last six months has been the
construction of the DASH prototype. We received the fabricated boards that implement
the directory-based cache coherence last October. Since then we have been spending
most of the time on hardware and software debugging. At the time of this writing, we
have two 8 processor (2-cluster) prototypes mostly debugged and working. The
prototypes boot UNIX and we have been able to run applications on them. We plan to
put together a 16 processo1 (4-cluster) system later this month.

Operating Systems for DASH: The DASH operating system kemnel is currently running
on a 2-cluster dash machine, supporting full intercluster memory access, cached dash
locks, a master cluster based file system, master cluster swapping, and cluster and
processor attachment. Currently, file system and swapping system are being expanded to
support transparent multicluster access. Research is being done on operating system
support for memory management and scheduling.

Multiprocessor Architectural Studies: We are continuing to study techniques for coping
with the large latency of memory accesses in multiprocessors. Evaluating the techniques
of hardware coherent caches, relaxed memory consistency, software-controlled
prefetching, and multiple-context processors, we show that factors of 4 to 7 improvement
in performance can be obtained on modest-sized machines. We have also developed two
novel techniques that can significantly improve the performance of sequential consistency
on dynamically scheduled processors.

Efficient Simulation of Multiprocessors: We have continued development of Tango, our
multiprocessor simulation system. We have extended it to work with light-weight threads
and to run on multiprocessors. Our new Tango system performs fully-ordered
simulations about 25 times faster than our old version on a uniprocessor. We have also
developed two new tools that aid in performance debugging of parallel programs.

Parallel Applications: We have put together a suite of realistic paralle]l applications
(called SPLASH) to provide to the parallel processing community. We hope that a
coherent suite of good, realistic applications will allow consistent and comparable
architectural evaluations to be performed.

Comriler Management of Memory Localiry: Blocking is an important optimization
directed to reduce the memory bottleneck found in most computer systems. It is the base
optimization technique used in the LAPACK library. We have been successful in
applying our automatic blocking algorithm to real codes such as matrix multiplication, a

successive over-relaxation (SOR) code, LU factorization without pivoting and Givens QR
factorization. Performance evaluation reveals that blocking can improve uniprocessor
workstations by a factor of 3-4; its impact on multiprocessor is even more significant as it
reduces memory contention, permitting a near-linear speed-up on multiprocessor systems.

Jade: We have made significant progress in the development of Jade, a language for
exploiting coarse-grain parallelism. Jade simplifies programming by providing the
illusions of sequential execution and a single address space, and it supports portability by
hiding the management of the hardware from the programmer. We have pushed the
fronts of both programmability and portability by studying the expression of new

applications in Jade, and implementing the language on different shared address space
machine platforms.

Parallel Simulation: The tesearch on integration of existing simulators into a common
simulation paradigm to facilitate a parallel multi-level mixed-mode simulator during this
period was concentrated mainly on the development of a prototype on an Intel iPSC/860
message-passing machine. An earlier prototype of a distributed multi-level mixed-mode
simulator on conventional workstations has also been tested during this period.

tJ

2. Technical Progress

2.1 Parallel Processor Architecture

2.1.1 The DASH Hardware

Since our last report, we have made considerable progress towards completing the 16
processor DASH prototype. The reply controller board was received from fabrication in
early October. Within a week after its receipt, we had a single cluster system on which we
were able to run diagnostics. After a few problems involving misunderstandings of the
underlying Silicon Graphics hardware were fixed, we were able to connect two clusters
together. A number of diagnostics have been run over the two cluster system, extensively
testing the basic coherence protocol. Currently, we have a two-cluster DASH system set
up at Silicon Graphics. with a second two-cluster machine set up at Stanford. The system
at Silicon Graphics is used for hardware debug, while the system at Stanford is used for
operating system development and hardware performance monitoring. We plan to
integrate the two systems into a single 16 processor system by the end of March.

The debugging effort of the DASH hardware has made steady progress. The extensive
simulation of the directory-controller and reply-controller boards has paid off well, as the
basic data path of both boards has remained unmodified. In addition to the test vectors
generated by the functional simulator. vectors corresponding to cases not modelled in the
simulator were generated by hand. A few bugs were discovered in the logic that handled
these cases, as the simulation coverage there was less complete. An example of an error
encountered involved backdoor access of the Remote Access Cache. which was getting
improper data due to a control signal not being held valid during the backdoor cvcle.
However, no major problems with the coherence protocol have been found. Most ¢ “the
modifications to the protocol ROM have resulted from either our own omissions of
protocol actions for a couple of states or a miscommunication of state between the reply-
controller and directory-controller boards.

The network, which was not modelled in the DASH simulation, proved to be more of a
problem. First, crosstalk between adjacent signals on the cable connecting the clusters
was causing bits to be corrupted. Special cables in which all signals are separated by a
ground, as opposed to a cable containing a single ground plane under the signals has
solved the crosstalk problem. More recently, diagnostics written specifically to stress the
network uncovered a second problem. Under heavy loading. duplicate network flits were
appearing at the output of the mesh routing chips. The network receive logic caught
thesc packets. which had the wrong length, so detection of the problem was relatively
straightforward. However. isolation of the problem proved to be more difficult. A good
portion of this difficulty was due to the asynchronous nature of the mesh routing chips.

Changes in the interface logic to the mesh routing chips would create subtle changes in
the timing of the network handshake signals. These changes would in turn alter the
frequency with which the problem occurred. After many weeks of debugging, a
connection between timing of the packets entering and leaving the mesh routing chip and
the error was observed.

Testing of the routing chip in isolation confirmed the relationship. If the request signal
for a packet entering the chip was slow/y rising at the same time as the request signal for
the packet leaving the chip was quickly falling, a glitch on the rising incoming request
signal would be generated. This glitch got interpreted as a pair of requests inside the
chip, and the extra flit was generated. On the mesh routing chip, the pins for the request
in and request out signals are physically adjacent, allowing this signal coupling to occur.
As a short term solution, the timing of the network requests has been slowed to avoid the
simultaneous switching of the requests in and out of the mesh routing chip. This solution
has solved the problem in our two-cluster system, however, as a longer term solution we
plan on speeding up the edge rates of the requests between mesh routing chips. This will
be done by routing the request signal from the cable to a buffer and then to the mesh
routing chip, instead of directly from the cable to the chip. Since the request in from the
cable will now rise faster, the coupling with the request out of the mesh routing chip will
be unable to induce the glitch.

The DASH hardware debugging continues, though we can already boot UNIX and run
parallel programs. A diagnostics shell provides a regression suite to check new board
changes, and the DASH protocol verifier (DPV) has been ported to the DASH hardware.
Hardware problems and software problems with DPV itself prevented its use as a
debugging tool until recently. Both the software and hardware problems have been

solved, and we plan on using DPV to complement the diagnostics in the DASH hardware
test effort.

2.1.2 The DASH Operating System

The DASH Operating System kernel is currently running on a 2-cluster DASH machine,
supporting full intercluster memory access, cached DASH locks. a master cluster based
file system, master cluster swapping, and cluster and processor attachment. This
operating system version has been tested by executing a series of parallel applications as
well as 10 intensive parallel compilations. To facilitate hardware and software testing
and debugging, we have implemented a multithreaded diagnostics support library that
allows running threads on different processors directly on the bare hardware. without the
assistance of the operating system.

We are working on several operating system enhancements for DASH. A virtual page
cluster attachment mechanism is being implemented to support efficient NUMA
placement and replacement policies. The file system and swapping svstem are being
expanded to support transparent multicluster access. We have also been doing research
on scheduling issues for machines like DASH, and we have developed a novel two-level
scheduler that offers high performance by combining the approaches of process control
and processor partitioning [1], {2].

The process control approach is based on the principle that to maximize performance, a
paratlel application must dynamically match the number of runnable processes associated
with it to the effective number of processors available to it. This avoids the problems
arising from oblivious preemption of processes and it allows an application to work at a
better operating point on its speedup versus processors curve. The processor partitioning
is necessary for dealing with realistic multiprogramming environments, where both
process controlled and non-controlled applications may be present. It also helps improve
the cache performance of applications. We have currently implemented this scheduler on
the single cluster of a DASH multiprocessor. Our experiments show that process control
can improve performance by as much as two-fold when multiple applications are run
simultaneously. We expect to see even more advantage on the multi-cluster DASH,
where processor partitioning may be used to restrict an application to one or more clusters
when the system is heavily loaded, while still allowing full use of the machine when there
is less load.

2.1.3 Basic Architectural Studies

Techniques that can cope with the large latency of memory accesses are essential for
achieving high processor utilization in scalable shared-memory multiprocessors. We
considered four important architectural techniques that address the latency problem.
namely (i) hardware coherent caches, (ii) relaxed memory consistency, (iii) software-
controlled prefetching, and (iv) multiple-context processors. While some data has been
available in the past regarding the benefits of the individual techniques [3]. [4]. no study
evaluates all of the techniques within a consistent framework. We have closed this gap
by providing a comprehensive study of the benefits of the four techniques. both
individually and in combinations, using a consistent set of architectural assumptions [5).
The results have been obtained using detailed simulations of a large-scale shared-memory
multiprocessor. and the results show that caching shared data and relaxed consistency
uniformly improve performance. The improvements due to prefetching and multiple
contexts are sizeable. but are much more application-dependent. Combinations of the
various techniques generally attain better performance than each one on its own. The
exception is multiple contexts with prefetching, which did not work well together.

Overall, we show that using suitable combinations of the techniques, a factor of 4 to 7
improvement in performance can be obtained.

On the subject of memory consistency, we have been continuing our performance
evaluation for processors with non-blocking loads to complement our previous results for
blocking loads. We have also concentrated on making it easier for a programmer to use
architectures with relaxed models. Our previous research addressed this issue by
showing that a release consistent architecture provides sequentially consistent executions
for programs that are free of data races. However, the burden of guaranteeing that the
program is free of data races remained with the programmer. To aid the programmer
further, we have developed a unique architectural feature that determines whether
sequential consistency is violated in architecture supporting a relaxed consistency model.
For every execution of the program, the technique determines either that the execution is
sequentially consistent or that the program has data races and may result in sequentially
inconsistent executions. The above mechanism maintains the high performance
associated with relaxed consistency models and can be used during normal executions of
the program. If the execution is sequentially consistent, the programmer is assured that
the relaxed consistency model did not affect the correctness of that execution. And if it is
determined that the program has data races, then the programmer knows that it is possible
to get sequentially inconsistent results if that program is executed on architectures
supporting relaxed models.

We have also studied more efficient implementations of sequential consistency for
prograinmers who are not willing to deal with the extra complexity introduced by
relaxing the consistency models. Previously, it was Widely believed that sequential
consistency could not be implemented without a high performance penalty. We have
proposed two techniques that boost the performance of sequential consistency and allow
performance close to that of relaxed models like release consistency (6]. The first
technique involves prefetching values for accesses that are delayed due to consistency
model constraints. The second technique employs speculative execution to allow the
processor to proceed even though the consistency model requires the memory accesses to
be delayed. We are currently studying the performance of these techniques.

Another area of ongoing investigation has been to evaluate the implementation and
performance trade-offs of limited pointer directories for cache coherence [7], [8].
Limited pointer techniques are important to scale directory-based machines to large
processor counts. These directories maintain cache coherence by storing several pointers
with each main memory block: identifving those caches containing the block. By
applying an analytic model of parallel workload behavior (verified against multiprocessor
address traces) to the state transition graphs implemented by the directory, we can easily

estimate the performance of limited pointers under various large-scale workloads. While
we have demonstrated that limited pointer directories show good performance in general,
blocks that exhibit a high ratio of read to write references yield performance levels that
are suboptimal. We have recently developed a scalable dyvnamic pointer allocation
directory that shows good potential for supplying the highest performance possible under
all but the most extreme workload conditions. Rather than building a fixed number of
pointers per entry into the hardware, this scheme allocates pointers as they are needed
from a pool of available pointers. We have identified the differences in the resulting
protocol relative to standard limited pointers directory organizations, including the steps
taken in exceptional circumstances, such as running short of available pointers. We have
also detailed one possible implementation approach and examined some potential
performance optimizations.

2.1.4 Simulation and Performance Debugging Tools

We have continued development of our multiprocessor simulation system. Tango. While
Tango is faster than our previous tools and has enabled many useful studies. large
simulations (involving hundreds of processors, complex memory hierarchies, and large
applications) are often too time-consuming to be practical with Tango. Our goal is to
speed simulations in three ways: (i) we have developed a successor to Tango that uses
light-weight threads instead of full-weight processes: (i) we are extending light-weight
Tango to run effectively on multiprocessors and ultimately on DASH; and (iii) we are
investigating the usefulness of simpler memory simulators for studies of complex
memory hierarchies. This is critical since simulation of the network and memory system
dominates total simulation time in many experiments. We believe that memory
simulations can be made less expensive by carefully analvzing the level of detail required
in simulation models and judiciously trading-off accuracy for efficiency. The new Tango
performs fully-ordered simulations about 35x faster than the old on a uniprocessor.

We are currently working on two tools that aid in performance debugging of programs.
Our first tool is called MTOOL [9]. It provides support for performance debugging of
parallel programs. The current implementation is for programs written with the ANL
macros running on MIPS-based multiprocessors (including DASH). In just more than
twice the time for a single execution of a parallel C or Fortran application on a given
input, MTOOL will develop hierarchical information on the distribution of execution
time for the program on that input broken down into:

CPU execution time

{ .erhead in accessing the memory hierarchy

Idle time waiting on synchronization (locks and barriers)
Parallel overhead

System Time

e

The first four classes of execution time may be viewed for the whole program, per
process, per procedure, and loop level. MTOOL constructs its program profile using a
combination of timer calls and execution time estimates based on basic block counts.
The basic block counting is accomplished with at a minimal perturbation to the program.
The basic block count information allows MTOOL to construct the CPU execution time
numbers, which in conjunction with measured execution times, enable MTOOL to
estimate the memory hierarchy overheads.

To understand and remedy performance bottlenecks, users often require information
about memory behavior at an even lower level than what MTOOL provides, that is, at the
level of individual data structures and procedures. Our second tool provides information
such as cache miss rates, memory latencies, and causes of cache misses. It helps the user
determine: whether the miss rate is high because of cold start misses. invalidation misses.
or replacement misses, which data structures are interfering with each other, and further
information about the program execution at this level. By systernatizing a process to
associate regions of shared memory with high level program names. we can present data
to users in terms of data structures and procedures they are familiar with, rather than, for
example, in terms of cache blocks. In its current form, this memory characterization tool
works with the Tango memory simulator. We intend to further develop the tool by
creating a version which uses the DASH hardware performance monitor to collect
program events in real-time, rather than through Tango simulations. We consider this
tool to be an important component of a complete performance debugging framework
which provides the user with information both on where a program'’s performance
bottlenecks are. and why they are occurring.

2.2. Parallel Software

2.2.1 Parallel Applications Studies

Designers of parallel systems are faced with a chicken and egg problem regarding
applications software. Few real applications exist to guide their design, and users are
unwilling to write new applications for systems that do not exist. The result is that
studies done to evaluate system features often base their conclusions on “toy™ programs
that bear little resemblance to, or are only a part of, the codes people will actually run on
these systems. We have put together a suite of realistic parallel applications (called
SPLASH) to provide to the parallel processing community [10]. We hope that a coherent
suite of good, real applications will allow consistent and comparable evaluations to be
performed. We have also put together a detailed documentation of the upplications and
their characteristics, providing a common reference point for the writers and readers of
evaluation studies. The anplications and documentation are likely to be released within
the next few weeks. The programs, many of which have been developed at Stanford.,
include five complete applications (an ocean simulation. a N-body molecular dynamics

simulation, a Monte Carlo rarefied hypersonic flow simulation, a global router for VLSI,
and a distributed-time circuit simulator) and three basic routines (two graph problems and
a sparse Cholesky factorization routine). Three other applications-a finite element
program, the Greengard-Rokhlin adaptive algorithm for N-body problems. and a
multigrid solver-are currently under development.

We have also been continuing our research on scalable parallelism in some real scientific
applications. Dividing the problem into finding parallelism and implementing it for
efficient performance, we are taking a quantitative look at the impact of various
transformations in enhancing scalable performance. We are trying to learn from this
effort what types of issues the programmer must be concerned about if scalable
performance is desired, what features are most desirable in parallel tools and
environments, and what the implications are for the design of scalable architectures.
Some results on finding parallelism have already been reported: the recent emphasis has
been on the tradeoff between data locality (for which results will soon be available) and
load-balancing, as well as on detailed interactions with a high-latency hierarchical
memory system.

One parallel application that we have been studving in great detail is sparse Cholesky
factorization. We have been considering alternative strategies for distributing the sparse
matrix among the processors to increase concurrency and reduce communication. In
particular, we have been looking at methods that distribute rectangular submatrices of the
sparse matrix among the processors, instead of the more traditional approach of
distributing entire sets of columns (supernodes). The asymptotic advantages of
submatrix-oriented methods are easily demonstrated through simple growth-rate
calculations. However, preliminary results indicate that these advantages do not come
into play for matrix sizes and multiprocessor configurations that we see now or expect to
see in the near future. Our immediate goal is to determine at what problem and machine
sizes the asymptotic advantages of such techniques will become imporant.

2.2.2 Data Dependence Analysis

In previous work. we had developed a data dependence analysis system which allowed us
to give exact results efficiently in all cases we have seen in practice. Our old algorithm
required all references and bounds to be linear functions of the induction variables. In the
past half year, we have successfully extended our system to handle unknown symbolic
terms, without loss of efficiency. It was commonly believed that symbolic testing is very
important in data dependence analysis. Our empirical results indicate that symbolic
testing expands the number of unique dependence analysis tests by only about 10%. a
much lower number than expected. This can be attributed to the fact that. besides being a
parallelizer, our compiler is also an optimizing scalar compiler. It employs aggressive

optimizations, including constant propagation, induction variable detection and forward
substitution, which tend to reduce the number of symbolic terms in array references. This

demonstrates the importance of integrating the scalar and parallelizing compilers into one
svstem.

We have also compared the quality of our algorithm to more standard methods: the GCD
test and Banerjee's test. The programs we used for comparison are the Perfect Club
Benchmarks, a set of 13 scientific Fortran programs ranging in size from 500 to 18.000
lines. Our algorithm is able to detect 16% more independent references, resulting in 22%
fewer direction vectors than these algorithms. This can potentially lead to a much greater
degree of exploitable parallelism [11].

2.2.3 Automatic Blocking

We have developed a mathematical formulation of the data locality optimization problem.
We introduce two concepts: the reuse vector space and reuse factors characterize the
potential reuse in an algorithm. The localized vector space, created by blocking or tiling,
is the space in which reuse can be exploited. The locality value is derived from the
intersection of these two vector spaces. The data locality optimization problem is to find
a unimodular and tiling transform that optimizes the locality value [12].

This analysis vields two important results. First, all transformed code with the same
localized vector space belong to the same equivalence class. This observation
significantly prunes the search for the optimal transformation. Second. the locality value
is much more sensitive to the dimensionality of reuse exploited than to block sizes: this

leads to the approach of choosing the loops to block innermost before choosing the block
size.

Unlike the stepwise transformation approach used in existing compilers, our loop
transformer uses a compound transformation that combincs permutation. skewing and
reversals directly. This is made possible by our theory that unifies loop transformations
as unimodular matrix transformations on dependence vectors with either direction or
distance components. The algorithm extracts the depenc=nce vectors. determines the best
compound transform, then transforms the loops and their loop bounds once and for all.
The elegance of the theory significantly simplifies the implementation of the algorithm.
Programs the algorithm can block successfully include matrix multiplication. successive
over-relaxation (SOR), LU factorization without pivoting. and Givens QR factorization.

Evaluation of the performance on a SGI 8-processor machine indicates that blocking is

very important. Blocking improves the performance on a single processor by a factor of
2.75. The effect of tiling on multiple processors is even more significant since it not only

10

reduces the average data access latency but also the memory bandwidth required.
Without blocking, contention over the memory bus limits the speedup to about 4.5 times.

Blocking permits speedups of over seven for eight processors, achieving an impressive
speed of 64 MFLOPS.

2.2.4 Jade Research

Given the current proliferation of parallel architectures, programmers should not have to
rewrite their parallel applications for each different machine. Jade provides a high-level
concurrency model that insulates the programmer from the low-level machine specific
details. To demonstrate this portability, we have implemented Jade on several different
platforms, including the Encore Multimax, the Silicon Graphics IRIS 4D/240 and the
Stanford Tango simulator running on a sequential machine. The programmer can
concentrate on providing the high-level information necessary to parallelize the
application, while the Jade system maps the computation efficiently onto the hardware.
Given our experience porting Jade to these different platforms, we expect to port Jade
easily to the Stanford DASH Multiprocessor [13].

We have tested our design of the Jade language by implementing several large
applications. These applications illustrate how Jade supports both irregular dynamic
dependencies. as well as structured static dependence patterns. One of these applications
is sparse Cholesky factorization—the computational bottleneck of such important
computations as linear programming, device simulation and finite-element analysis. This
application parallelizes well in Jade even though the parallelism is highly dependent on
the input data. The UNIX make utility, another application with irregular parallelism. is
also easily parallelized with Jade. We have also parallelized a number of additional
applications which have more regular concurrency patterns. These include LocusRoute. a
VLSI circuit router, and the Perfect Club benchmark MDG.

We have investigated various performance enhancements for the Jade system, based on
our work on Jade applications and the demands of modern multiprocessor architectures.
One of the most critical issues in achieving high performance on these modern
multiprocessors is optimizing for data locality. We are currently investigating a task
placement heuristic for Jade that attempts to minimize the amount of data that must be
transferred between processors. This heuristic executes tasks accessing the same data on
the same processor.

11

2.3 Uniprocessor Architecture

2.3.1 Super-Scalar Computers

For the past six months, we concentrated on the hardware and software aspects of the new
architecture proposed for superscalar processors. This architecture combines the
advantages of dynamic and static scheduling techniques, while minimizing the short-
comings of each, to increase the performance of non-numerical applications. This is
accomplished through a technique called boosting which allows the compiler to use
sophisticated scheduling techniques on both sequential and speculatively-executed
instructions. Efficient speculative execution is supported by shadow structures in the
hardware that commit boosted state on correct branch prediction and squash boosted state
on incorrect predictions.

Currently, a group of five graduate students are looking in depth at the issues involved in
building a VLSI processor to support boosting and superscalar execution. We have a
logic-level simulator running. and are in the process of determining exactly what
hardware is needed to implement each of the functions in the simulator. We are also
beginning work on an instruction-level simulator to allow us to verify the results of our
logic-level simulator.

Work continues on the scheduling passes for our compiler system that will generate code
for our architecture. A significant amount of time has been spent trying to allow one to
easily change the underlying instruction set without having to make major changes to the
scheduler or to the scheduling algorithms. To aid in the development of the hardware, we

have also coded a simple assembler to allow us to create programs for the hardware
simulator.

2.4 Computer-Aided Design

2.4.1 Simulation

Parallel simulation and CAD applications have been proposed to further explore the
potentials of the DASH multiprocessor machine and of parallel paradigms in general.
Parallelism is obtained at a simulator level by decomposing its simulation into smaller
blocks and managing the communication and synchronization of these blocks. as
described in earlier reports.

The lirst prowi:, ~the parallel multi-level simulator was tested on conventional
workstations. The second step is to extend the prototype onto parallel machines. We have
successfully ported the simulator onto an Intel N-cube multiprocessor and will

eventually, after the DASH multiprocessor machines is stabilized, test the simulator on
DASH.

During the last six months, we continued the testing of the first prototype on a network of
workstations. The performance gain of using multiple workstations in concurrent
simulation was tapered by the communication overhead: still we obtained a speedup
factor of 2 or more by running parallel multi-ievel simulation on five workstations. The
correctness of the simulation, and thus the parallel programming of our multi-level
mixed-mode simulator, was also verified.

The second prototype was developed on an Intel iPSC/860 message-passing machine and
it is currently being tested. The decision to install the second prototype on the iPSC/860
was based on machine availability and a match with our framework of communication
mechanism that exchange information through messages. The prototype installation on
the iPSC/860 requires a change of localized portions of the simulation kernel that handles
the communication between different instances of the simulation nodes. It also requires
us to port the simulation programs being integrated (THOR, SPICE, and IRSIM, at the
moment) to the Intel iPSC/860 node. The performance gain of using a message-passing
multiprocessor for parallel multi-level simulation will be tested and measured.

3. Publications, Presentations, Reports

1.

(]

10.

11

13.

Gupta, A., Tucker, A. and Urushibara, S., The Impact of Operating System
Scheduling Policies and Synchronization Methods on the Performance of Parallel
Applications, ACM SIGMETRICS '9], May, 1991.

Tucker, A, Stevens, L. and Gupta. A. "Making Effective Use of Shared-Memory
Multiprocessors: The Process Control Approach,” October, 1991, Submitted for
publication.

Gharachorloo, K., Gupta, A. and Hennessy, J. L., Performance Evaluation of
Memory Consistency Models for Shared-Memory Multiprocessors, ACM/IEEE.
Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IV'), Santa Clara, CA. April, 1991.

Mowry, T. and Gupta, A. "Tolerating Latency Through Software-Controlled
Prefetching in Scalable Shared-Memory Multiprocessors,” Journal of Parallel and
Distributed Computing. June, 1991. To appear.

Gupta, A., Hennessy. J., Gharachorloo, K.. Mowry, T. and Weber. W.-D.,
Comparative Evaluation of Latency Reducing and Tolerating Techniques, 18th
International Symposium on Computer Architecture, May, 1991.

Gharachorloo, K., Gupta, A. and Hennessy, J., Two Techniques to Enhance the
Performance of Memory Consistency Models, [International Conference on
Parallel Processing. 1991.

Simoni, R. and Horowitz, M., Dynamic Pointer Allocation for Scalable Cache
Coherence Directories, [International Symposium on Shared Memory
Multiprocessing. Tokyo, Japan. April 2-4. 1991.

Simoni, R. and Horowitz, M., Modeling the Performance of Limited Pointers
Directories for Cache Coherence, [8th International Symposium on Computer
Architecture, May 27-30, 1991.

Goldberg, A. and Hennessy, J., MTOOL: A Method for Isolating Memory
Bottlenecks in Shared Memory Multiprocessor Programs, International Conference
on Parallel Processing (ICPP), 1991.

Singh, J. P., Weber, W.-D. and Gupta, A.. SPLASH: Stanford Parallel Applications

for Shared-Memory, Stanford University, Computer Systems Lab, Technical Repon

Report, 1991. Submitted for publication.

Maydan, D. E., Hennessy, J. L. and Lam. M. S., An Efficient Method for Exact
Data Dependence Analysis, ACM SIGPLAN 91 Conference on Programming
Language Design and Implementation, June, 1991,

Wolf, M. E. and Lam. M. S., A Data Locality Optimizing Algorithm, ACM

SIGPLAN 91 Conference on Programming Language Design and Implementation.
Tine, 190!

Lam. M. and Rinard, M., Coarse-Grain Parallel Programming in Jade. ACM

Sigplan, 3rd Symposium on Principles and Practice of Parallel Programming.
April. 1991.

14

14.

15.

16.

17.

18.

19.

2
o

9
I

Gibbons, P. B. "A Synthesis of Parallel Algorithms." Asynchronous PRAM
Algorithms. Reif ed. 1990 Morgan-Kaufmann. San Mateo.

Lam, M. "The Software Pipelining Algorithm and Experimental Results.”
Transactions on Programming Languages and Systems. 1990. Submitted.

Rothberg, E. and Gupta, A. "Efficient Sparse Matrix Factorization on High-
Performance Workstations--Exploiting the Memory Hierarchy.” ACM Transactions
on Mathematical Sofrware. 1991. To appear

Rothberg, E. and Gupta, A., A Comparative Evaluation of Nodal and Supernodal
Parallel Sparse Matrix Factorization: Detailed Simulation Results, Stanford
University, Computer Systems Laboratory, Technical Report, CSL-90-416.
February, 1990. Also appears as STAN-CS-90-1305 published under the auspices
of the Computer Science Department.

Singh, J. and Hennessy, J. L. "Parallelizing an Ocean Simulation Program:
Experience, Results and Implications,"” Jowrnal of Parallel and Distributed
Computing. 1990. Submitted.

Berlin, A. and Weise, D. "Compiling Scientific Code using Partial Evaluation.”
IEEE Computer. 23, (9): December, 1990.

Rothberg. E. and Gupta. A., Techniques for Improving the Performance of Sparse
Matrix Factorization on Multiprocessor Workstations. [EEE Computer Society.
Supercomputing ‘90, New York , NY. November, 1990.

Chow, F. and Hennessy, J. "The Prioritv-based Coloring Approach to Register
Allocation,” [EEE Transactions on Programming Lunguages and Svstems.
October, 1990.

Weise, D. and Ruf. E., Computing Tvpes During Program Specialization, Stanford
University, Computer Systems Lab, Technical Report Report, CSL-TR-90-441.
October, 1990.

Acharya, A., Tambe, M. and Gupta, A. "Implementation of Production Systems on
Message-Passing Computers,” [EEE Transactions on Parallel and Distributed
Systems. 1991. To appear.

Gharachorloo, K. and Gibbons, P., Detecting Violations of Sequential Consistency.
3rd Annual ACM Symposium on Parallel Algorithms and Architectures, 1991.

Gupta, A. and Weber. W.-D. "Cache Invalidation Patterns in Shared-Memory
Multiprocessors,” IEEE Transactions on Computers. 1991. To appear.

Saraswat, V.. Rinard, M. and Panangaden, P.. Determinate Constraint
Programming, 1991.

Saraswat, V., Rinard, M. and Panangaden. P., A Model for Concurrent Constraint
Programming, 1991.

Singh, J. P. and Hennessy, J. L., Automatic and Explicit Parallelization of an N-
Body Simulation. /EEE TENCON "91. 1991.

33.

34.

Singh, J. P. and Hennessy, J. L. "Parallelizing the Simulation of Ocean Eddy
Currents,” Journal of Parallel and Distributed Computing. 1991. To appear.

Torrellas, J., Lam, M. and Hennessy, J. L. "Measurement, Analysis, and
Improvement of the Cache Behavior of Shared Data in Cache Coherent
Multiprocessors," [EEE Transactions on Computers. 1991. To appear.

Lam, M. S., Rothberg, E. E. and Wolf, M. E., The Cache Performance and
Optimizations of Blocked Algorithms. Fourth International Conference on
Architectural Support for Programming Languages - ASPLOS -1V, April, 1991.

Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W.-D., Gupta, A. and Hennessy.
J. L., Overview and Status of the Stanford DASH Multiprocessor, /SSMV
Conference, Tokyo, Japan. April, 1991.

Singh, J. P. and Hennessy, J. L., An Empirical Investigation of the Effectiveness
and Limitations of Automatic Parallelization, International Symposium of Shared
Memory Multiprocessing (ISSMM), Tokyo, Japan. April, 1991.

Wolf, M. E. and Lam, M. S. "A Loop Transformation Theory and Algorithm to
Maximize Parallelism," [EEE Transactions on Parallel and Distributed Systems.
July, 1991. To appear.

Wolf, M. and Lam, M., A Loop Transformation Theory and Algorithm to
Maximize Parallelism, Principles of Programming Languages, January, 1991.

Williams, T. E., Analyzing the Latency and Throughput Performance of Self-
Timed Pipelines and Rings, VLSI-91 IFIP Conference, August, 1991.

Williams. T. E. and Horowitz, M. A., A 160nS Division Implementation Using
Self-Timing and Symmetric Overlapped Execution, /EEE Conference on Compuzer
Arithmetic (ARITH-10), June, 1991.

16

4. Project Staff

Faculty:

John Hennessy jlh@vsop.stanford.edu 415/725-3712
Principal Investigator

Mark Horowitz horowitz@chroma.stanford.edu 415/725-3707
Associate Investigator

Anoop Gupta ag@pepper.stanford.edu 415/725-3716

Monica Lam lam@k?2.stanford.edu 415/725-3714

Daniel Weise daniel@ mojave.stanford.edu 415/725-3711

Teresa Meng meng@ tilden.stanford.edu 415/725-3636

David Dill dill@amadeus.stanford.edu 415/725-3642

Research Staff:
Charlie Orgish
David Nakahira
Laura Schrager

Graduate Students:

Saman Amarasinghe Martin Rinard
Jennifer Anderson Ed Rothberg
Rohit Chandra Arturo Salz
Tom Chanak Dan Scales
Helen Davis Rich Simoni
Andrew Erlichson JP Singh
Kourosh Gharachorloo Mike Smith
Aaron Goldberg Larry Soule
Steve Goldschmidt Don Stark
Truman Joe Luis Stevens
Lydia Kavraki Steve Tjiang
Jim Laudon Anthony Todesco
Dan Lenoski Josep Torrellas
John Maneatis Andrew Tucker
Marguret Martonosi Wolf Weber
Dror Maydan Ted Williams
Arul Menezes Malcolm Wing
Todd Mo -~ Drew Wingard
Jason Nieh Michael Wolf
Karen Pieper

17

Comparative Evaluation of
Latency Reducing and Tolerating Techniques

Anoop Gupta, John Hennessy,
Kourosh Gharachorioo, Todd Mowry, Wolf-Dietrich Weber

Computer Systems Laboratory
Stanford University, CA 94305

Abstract

Techniques that can cope with the large latency of memory accesses
are essential for achieving high processor utilization in scalable
shared-memory multiprocessors. In this paper. we consider four
prominent architectural techniques that address the latency problem,
namely (1) hardware coherent caches, (ii) relaxed memory consis-
tency. (iii) software-controlled prefetching. and (iv, muluple-context
processors. While some data has been available in the past regarding
the benefits of the individual techniques, no study evaluates all of
the techruques within a consistent framework. This paper anempts
to £l the above gap by providing a comprehensive stud: of the ben-
efits of the four techniques. both individually and in combwatons,
using a consistent set of architectural assumpuons. The results in
this paper have been obtained using detailed simulations of a large-
scaie shared-memory multiprocessor. Our results show that caches
and relaxed consistency uniformly improve performance. The im-
provements due to prefetching and mulupie contexts are sizeable,
but are much more application-dependent. Combuinations of the var-
lous techniques generally artain betier performance than each one on
its own. The exception is multiple contexts with prefetching, which
did not work well together. Overall, we show tha: using suitable
combinauons of the techniques. a factor of 4 to 7 improvement in
performance can be obrained.

1 Introduction

Large-scale shared-memory multiprocessors are expected to have
remote memory reference latencies of several tens to hundreds of
processor cycles {19, 23, 26, 31]. The large latencies arise partly
due 10 the increased physical dimensions of the paralel machine and
partly due to the ever increasing clock rates a1 which the individual
processors operats. These large memory latencies can quickly offset
any performance gains expected from the use of parallelism. Tech-
niques that can help to reduce or hide these latenzies are essential
for achieving high processor utilization.

To cope with the large latencies, several different architectural
techniques have been proposed. Coherent caches (3. 4, 19, 31] al-
low shared read-write data to be cached and sigruficantly reduce
the memory latency seen by the processors. Relaxed memory con-
sistency models (1, 6, 9] hide latency by allowing buffering and

Revised version to appear in 199]
Internat. - .0 S0, o=l . C =huter

Architecture

pipelining of memory references. Preferching techniques {12, 17,
22, 24] hide the latency by bringing data close to the processor be-
fore it is actually needed. Muluple contexts [3. 13, 14, 27] allow a
processor to hide latency by switching from one context to another
when a high-latency cperation is encountered.

Our primary objective in this paper is to characterize the benefits
and costs of these four latency hiding technigues 1n a systematic
and consistent manner. Although one can find papers that focus on
the performance of the individual techniques [8. 12, 30], it 1s not
possible to use these papers to perform a comparative evaluation,
since frequently the benchmark programs used are different. or the
architectural assumptions made are different. or both. We believe
that a consistent comparative evaluation is essenual to understand-
ing the tradeoffs implicit in the use of the different techniques.
Furthermore. since several of the techniques can be provided on the
same multiprocessor. the second objective of thus paper is to evalu-
ate the interactions and gains from the combined use of the various
techniques.

The results presented in this paper are obtained from detailed
architectural simulations performed for three parallel apphcauons.
The architecture used is based on the Stanford DASH muluproces-
sor [19], a large-scale shared-memory muluiprocessor that provides
coherent caches. a relaxed memory consistency model. and support
for software-controlled prefetching. The applzanons we study are
a particle-based simulator used in aeronautics s MP3D) [21]). an LU -
decompositon program (LU, and a digita! logiz simulation program
(PTHOR) [28]. The appl-cations are typical of those that may be
found in an engineering environment.

Our results show that the provision of coherent caches leads to
significant performance benefits. In fact. for this reason, al) re-
mainung experiments in the paper were done assuming that coher-
ent caches are provided. Our studies of the sequential corsistency
model versus relaxed memory consistency modeis show that relaxed
consistency modeis uniformly improve performance. Prefetching
and multiplecontext processors also provide performance .mprove-
mernts, but the magnitude varies considerably depending on the ap-
plication. Combinations of relaxed consistency with prefetching, or
relaxed consistency with multiple contexts work well. Surpnsingly.
no further gains are achieved when both prefeiching and muluple
contexts are used. Overall, a suitable combinanon of the latency
reducingfolerating techniques discussed in this paper boost perfor-
mance by a factor of 4 10 7 for the applications studied.

The paper is organized as follows. Section 2 agescribes the archi-
tectural assumptions, the benchmark applicanons. and the simulator
used in this study. Simulation results for the performance of each of
the techniques are presented in Sections 3—6. Finally, we conclude
in Section 7.

Processor ‘—— 'r_____.
gh'_. | Directory | Processor
—— el Memon L
. ! &
! Memony ’

Controller [e
5 Pnmary
i Cache
. - Wrie
- i Buffe
I g
—_— Iy 1
| Processor P Sec i
[P — I ondary
Cache b ory ‘ Cache
Memory L
& |
| Memon Controller L Processor Environment
Architecture

Figure 1: Architecture and processor environment.

2 Multiprocessor Architecture, Benchmark
Applications, and Simulator

To enable meaningful performance comparisons between the differ-
ent techniques it is necessary to focus on a specific class of mulu-
processor architectures. The reason is that the radeoffs may vary
depending on the architecture chosen. For example. the tradeoffs
for a small bus-based multiprocessor where broadcast is possible
and muiss latencies are ten to twenty cycles are quite different from
the tradeoffs for a scalable multiprocessor where broadcast is not
possible and miss latencies may be a hundred or more cycles. This
section presents the architectural assumptions, the benchmark appli-
cations, and the simulation environment used to get the performance
results.

2.1 Architectural Assumptions

For this crudy, we have chosen an architecture that resembles the
DASH multiprocessor [19], a large-scale cache-coherent machine
currently being built at Stanford. Figure 1 shows the high-level
organization of the simulated architecture. The architecture con-
sists of several processing nodes connected through a low-latency
scalable interconnection network. Physical memory is distributed
among the nodes. Cache coherence is maintained using an invalidat-
ing, distributed directory-based protocol. For each memory block,
the directory keeps track of remote nodes caching it. When a write
occurs, point-to-point messages are sent to invalidate remote copies
of the block. Acknowledgement messages are used to inform the
originating processing node when an invalidation has been com-
pleted.

We use the actual parameters from the DASH protorype wher-
ever possible. but have removed some of the limitations that were
imposed on the DASH prototype due to design effort constraints.
Figure 1 also shows the organization of the processor environment.
Each node in the system contains a 33MHz MIPS R3000/R3010 pro-
cessor connected to a 64 Kbyte write-through pnmary data cache.
The write-through cache enables processors to do singlecycle write
operations. The primary data cache interfaces to a 256 Kbyte sec-
ondary write-back cache. The interface consists of a read buffer
and a write buffer. The write buffer is 16 entries deep. Reads can
bypass writes in the write buffer if permitted by the memory con-
sistency model. Both the primary and secondary caches are lockup-
free [15). direct-mapped, and use 16 byte lines. The bus bandwidth

Read Operations

i Hitin Pnmary Cache 1 pelock
. Rll from Secondary Cache 14 pclock
. Fll from Local Node 26 pelock

Fll from Home Node (Home - Locali 72 pelock

Fl from Remote Node (Remote - Home - Local) 90 pelock
Write Operations

|
f
!

! Owned by Secondary Cache 2 peloch
. Owned by Local Node 18 pclock
' Owned in Home Node (Home - Locali 64 peiock

_Owned in Remote Node (Remote - Home - Local) 82 pelock

Table 1: Latency for various memory sysiem operations in processor
clock cycles (1 pclock = 30 ns).

of the node bus is 133 Mbytes/sec. and the peak network bandwidth
is approximately 150 Mbyies/sec into and 150 Mbytes/sec out of
each node.!

The latency of a memory access in the sunulaled architecture
depends on where in the memory hierarchy the access is serviced.
Table 1 shows the latencies for servicing accesses at different lev-
els of the hierarchy, in the absence of contention. The latency
shown for writes is the time for reuring the request from the wrile
buffer. This latency is the ume for acquiring exclusive ownership
of the line, which does not necessarily include the nme for receiv-
ing acknowledgement messages from invalidanions. The following
naming convention is used for describing the memory hierarchy.
The local node is the node that contains the processor originating
a given request, while the home node 1s the node that contains the
main memory and directory for the given physical memory address.
A remote node is any other node.

2.2 Benchmark Programs

In this subsection we describe the computatznal structure of the
three benchmark applications used in thus paper. This information
will be useful in later sections for understancing the performance
results. The selected applications are representanive of algonthms
used in an engineering computing environmeni. All of the appli-
cations are written in C. The Argonne Natioral Laboratory macro
package [20] is used to provide synchronizaton and sharnng pnm-
itives. Some general statistics for the benchmarks are shown in
Tabie 2.

MP3D [21] is a 3-dimensional particle simulator. It is used to
study the pressure and temperature profiles created as an object flies
at high speed through the upper atmosphere. The primary data ob-
jects in MP3D are the particles (representing the air molecules), and
the space cells (representing the physical space. the boundary con-
ditions, and the flying object). The overall computation of MP3D
consists of evaluating the posinons and velociues of particles over
a sequence of time steps. Duning each ume siep, the particles are
picked up one at a ime and moved according to their velocity vec-
tors. If two particles come ciose to each other. they may undergo a
collision based on a probabilistic model. Collis.ons with the object
and the boundaries are also modeled. The simiiator is well suited to
parallelization because each particle can be treated independently at
cach time step. The program 1s parallelized by statically dividing the
particles equally among the processors.” The main synchronization
consists of barriers between each time step. For our experiments
we ran MP3D with 10,000 particles, a 14x24x7 space array, and
simulated 5 time steps.

LU performs LU-decomposition of dense mawrices. The primary

The architectural parameters in thus paper &iffer froe those m previous pa-
pers {8, 22], and therefore results should not be comparsd directly.

3To minimuze cache miss penalbes, the partcies ass:gned to 3 processor are
allocated from shared-memory tn that processor s node

Page 2

Table 2: General statistics for the benchmarks.

7777 7 T Useful Shared Shared | T T 7T Shared
1 Cycles Reads Wnies Data Size
Program 1 (K 1.4 (K) Locks Bamers /KByies;
TMP3D] S774 1170 530 0 48 536
LU 27.861 5543 2727 1 3184 29 653
"PTHOR | 19031 3774 454 75878 _ 2016 2925

data structure in LU is the matrix being decomposed. Working
from left to right, a column is used 1o modify all columns 1o its
night. Once all columns to the left of a column have modified that
column, 1t can be used to modify the remaining columns. Columns
are stancally assigned to the processors in an interleaved fashion.
Each processor waits until a column has been produced, and then
thai column is used 1o modify all columns that the processor owns.’
Once a processor completes a column, it releases any processors
waiting for that column. For our experiments we performed LU-
decomposition on a 200x200 matrix.

PTHOR {28] is a parallel logic simulator based on the Chandy-
Misra simulation algorithm. Unlike centralized-time algorithms,
thuis algonthm does not rely on a single global time during sim-
ulation. The primary data structures associated with the simulator
are the logic elements (e.g., AND-gates. flip-flops;. the nets (wires
Linking the elements), and the task queues which contain acuvated
elements. Each processor executes the following loop. It removes
an acuvated element from one of its task queues and determines
the changes on that element’s outputs. It then looks up the net
data structure to determine which elements are affected by the out-
put change and schedules the newly acuvated elements on to task
queues. In the case thar a processor runs out of tasks, it spins on
the task queues until a new task is scheduled. This ime shows up
as busy ume in our experunents, ever. though it should rightfully
be counted as synchronization time. Ttrus fact jeads to variations in
busy ume from experiment to experiment, even though the amount
of useful work being done remains approximately the same. For
our experiments we simulated five clock cveles of a small RISC
processor consisting of the equivalent of 11.000 two-input gates.

2.3 Simulation Environment

An event-driven simulator is used to simulate the major compo-
nents of the architecture at the behavioral level. For example, the
caches, the cache coherence protocol, the contention and arbitration
for buses, are all modeled in detail. The simulations are based on
a 16 processor configurauon. We do not go bevond 16 processors
since the concurrency requirements are very large for multiple con-
text simulations. For example, when modeling 4 hardware contexts
per processor, 16 processors require the application to support 64
concurrent processes. Some of our existing applications do not scale
wel] bevond 64 threads. The architecture simulator ts tightly cou-
pled to the Tango reference generator [10) to assure a cofrect inter-
leaving of accesses. For example, a process doing a read operation
1s blocked until that read completes, where the latency of the read is
determined by the architecture simulator. Unless specific directives
are given by an application, main memory is distributed uniformly
across all nodes using a round-robin page allocation scheme.

We now come 1o a difficult methodological problem that shows up
when simulating large muluprocessors. Given that detailed simula-
tors are enormously slower than the real machines being simulated,
one can only afford to simulate much <maller problems/applications
than those that w . = run or, i ..al mactune. The question
anses of how to scale the machine parameters so as to get realistic

'The main memory for stormg columns that are owned by a processor is
allocawed from shared.memory in that processor s node.

performance estimates. For example, consider the MP3D applica-
tion. In real life, the applicauon is run with enough partcles to fill
the complete main memory of a machine. Since at each time step 1n
the applicauon all particles are moved (i.e., the complete memory
is swept through). the caches are expecied to rmuss on each particle.
Had we retained the 64 Kbyte primary and 256 Kbyie secondary
caches in the simulator, then we would have had to run MP3D with
at least 125,000 particles to achieve realistic cache behavior. This
would have taken extremely long to run.

We see no easy answer to the above question and are currently
investigating the issues. For this study, however, we have chosen
to scale down the cache sizes to get a more realistic problem size
to cache size ratio. We scale down the processor caches to 2 Kbyte
primary and 4 Kbyle secondary caches.* For MP2D, we get miss
ratios approximating a large problem with full-size caches. How-
ever, we use only 10.000 particles and thus reduce the simulation
time substantially. The data sets for the other two applications were
also adjusted to get realistic cache hit ratios and reasonable run
times. For LU, the daia set size is chosen such that the data starts
fiting into the combined caches of the processors only when the
bottom third of the matrix remains to be factored. As a resuli, the
processors get poor cache hit ratio in the beginning, and high hit ra-
tios towards the end. This kind of behavior is not atypical of many
numerical applications. For PTHOR. our experiments use a circut
with 11,000 gates. However. on the real machine, we expect to be
using circuits with hundreds of thousands of gates. We thus reduce
the cache size and the circuit size proporuonately. To substannate
our results. we have also done experiments with larger cache sizes.
Although we do not present the results here, due to lack of space,
the results showed similar rends.

3 Coherent Caches

The first of the four techniques that we study is caching of shared
data. The use of processor caches is a well accepled technuque
for reducing iatencies in uniprocessors. Their use in muluproces-
sors, however, is complicated by the fact that the caches need to
be kept coherent. While the coherence problem is easily solved for
small bus-based multiprocessors through the use of snoopy cache-
coherence protocols {4], the problem is much more complicated
for large-scale multiprocessors that use general inlerconnecton net-
works [5]. As a result. some existing Jarge-scale muluprocessors do
not provide caches (e.g., BBN Bunerfly [26]), others provide caches
that must be kepi coherent by sofrware (e.g.. IBM RP3 [23]), and
still others provide full hardware support for coherent caches (e.g..
Stanford DASH [19]). In this section we evaluate the performance
benefits when both private and shared read-write data are cacheable
as allowed by hardware coherent caches versus the case when only
private data are cacheable.

An aliernative to hardware coherence is software cache coher-
ence. Software schemes require sophisticated compiler technoiogy
and, in general, are conservanve since they do not employ full dy-
namic information. Thus imples that the performance of software
coherence schemes will usually lie between not caching shared data
and hardware coherent caching of shared data Due to lack of appro-
priate compiler technology. we could not evaluate the effectiveness
of software schemes.

Figure 2 presents a breakdown of the normalized execution times
with and without cachung of shared data for each of the applications.
Private data are cached in both cases. The experiments assume the
sequential consistency model. so that no buffering or pipelirung of
cache misses is allowed. The execution time of each application
is normalized to the execution time nf the case where shared data

“These caches are only used for shared data Instruction and privaie data
references are not sent to the cache simulator and are implicitly assumed to hit
in the cache.

Page 3

1009 1009 100.0]
100 3~ Syre. Time
E B m s w43 Write Miee Time
§ 20 t s 10.7 Il Reed Mise Time
Tne
§ 0 na
w PF
1ot
1 wf
7.1 71 452
z‘ . 4518 %5 g 8
TR e =4 o
= ns
= 109 I o
10§
0 7.0 7.0 " 95 [X] 72
No Cache Cache No Cache Cache No Cache Cache
MP3D w PTHMOR

Figure 2: Effect of caching shared data.

is not cached. The bottom section of each bar represents the busy
time or useful cycles executed by the processor. The section above
it represents the time that the processor is stalled waiting for reads.
The section above that is the amount of time the processor is stalled
waiting for writes to be completed. The top section, labeled syn-
chronization time, accounts for the time the processor is stalled due
to locks and barriers.

As expected, the caching of shared read-write data provides sub-
stantial gains in performance, with benefits ranging from 2.2 to
2.7 fold unprovement for the three programs. The larges: benefit
comes from the reduction in cycles wasted due to read misses. The
cycles wasted due to write musses are also reduced. although the
magnitude of the benefits vanes across the three programs due to
different write hit rates. The cache hit rates achieved by MP3D. LU,
and PTHOR are 80%, 66%, and 77% respectively for shared-read
references, and 75%, 97%, and 476 for shared-write references. It
is interesting to note that these hit rates are substantially lower than
the usual uniprocessor hit rates. The low hit rates arise from sev-
eral factors: the data set size for engineering applications 1s large,
parallelism decreases spatial locality in the applicanon, and com-
munication among processors results in invalidation misses. Still,
hardware cache coherence is an effective technique for substanually
increasing the performance with no assistance from the compiler or
programmer.

Although caching shared daia improves the performance substan-
tially. the large number of cache musses and the large latency of each
miss still keep the processor utilizations low (about 17% for MP3D,
26% for LU, and 169 for PTHOR). The next three sections study
the effect of three different techniques for dealing with the large la-
tency of cache misses by overlapping them with other computation
and memory accesses. We assume hardware coherent caches for
the rest of this study.

4 Relaxing the Memory Consistency Model

One way 1o remedy the large latency of cache misses is to hide
the latency of accesses by buffering and pipelining the misses. Un-
fortunately. as a resuit of the combination of distributed memory,
caches, and general interconnection networks used by large-scale
multiprocessors [3, 19, 23], multiple requests issued by a processor
may execute out of order. This may result in incorrect program
behavior if the program depends on cerain accesses to complete in
order. Consequently, restrictions have 1o be placed on the types of
buffering and pipelining allowed. These restrictions are determined
by the memory consistency model supported by the multiprocessor.

Several memory consistency models have been proposed. The
strictest model is that of sequennal consistency [16) (SC). It requires
the execution of a paralle]l program o appear as some interleaving
of the execution of the paralie] processes on a sequential machine.

Unfortunately, SC imposes severe restrictions on the outstanding
accesses that a process may have, thus limiting the buffenng and
pipelining allowed. One of the most relaxed models 1s the release
consisiency [9] (RC) model. Release consistency requires that syn-
chronization accesses in the program be identified and classified as
either acquires (e.g., lock) or releases (e.g.. unlock). An acquire
is a read operation (can de part of a read-modufy-write) that gains
permussion tc access a sel of data, while a release ts a write oper-
ation that gives away such permssion. This informaton is used to
provide flexibility 1n buffering and pipelining of accesses berween
synchronizations. The main advantage of the relaxed models is
the potenual for increased performance. The main disadvantage is
increased hardware complexity and a more compiex programming
model.

Other relaxed models that have been discussed i the Lierature are
processor consistency [9, 11], weak consistency [6]. and DRFO [1].
These models fall between sequential and release consistency mod-
els in terms of flexibility and are not considered further 1n this
study. For a detailed performance evaluation of relaxed memory
consistency models, we refer the reader to a previous study [8].

4.1 Implementation of Consistency Schemes

Sequential consistency is satisfied in owr implementation by ensur-
ing that the memory accesses from each process complete in the
order that they appear in the program. This is achieved by delaving
the issue of an access until the previous access completes. The pro-
cessors used in this study already stall on reads until the read access
is satisded. In addition, under SC. we explicitly stall the processor
after every write unul the wnte completes.

Release consistency can be satisfied by (i: stalling the proces-
sor on an acquire access until it completes and (u, delaying the
completion of a release access until all previous memory accesses
complete. In the impiementanon assumed in this paper. the first
condition is automatically sauisfied because the processor stalls on
all read accesses (including acquires) until the read 1s complete.
To sausfy the secand conditon for RC. the write buffer is stalled
on a release access until previously issued writes complete. To
fully realize the benefits of RC, we allow reads to bypass the wrile
buffer and provide a locsup-free cache such that reads can be ser-
viced while there are write misses outstanding [8]. Thus ensures
that reads are not stalled due to previous wries. The lockup-free
cache also allows muluple write accesses to be pipelined.

Although the conditions for sansfving RC allow accesses and
computation following a read to be overlapped and pipeiined with
the read, the implementation we study does not allow such overlap
since reads are blocking. The design of processors that allow mul-
tiple outstanding reads and out-of-order execution of instructions is
a current topic of research. However, the feasibility of such proces-
sors in addition to their effectiveness in hiding the latency of reads
is still an open question.

The cost of implementing RC over SC arises from the extra hard-
ware cost of providing a lockup-free cache and keeping track of
multiple outstanding requests. Although this cost is not neghgible,
the same hardware {eatures are also required to suppon prefeiching
and multiple contexts.

4.2 Comparison of SC versus RC

Figure 3 presents the breakdown of execution times under SC and
RC for the three applicanions. Some general observanons that can
be made from the breakdown are the following: (1) the major reason
for RC outperforming SC is that RC does not stall the processor on
write accesses; and (i) the read miss time forms a large poruon of
the idle time, especially once we move from SC to RC. As can be
seen from the results, RC removes all idle ume due to write miss

Page 4

100.0 3
100 b 0 Sync. Time
é Lo Write Miss Time
§ wi - Read Miss Time
Busy Time
§ ©F %2
w PF 77 84
i ol EA
i =t
za ©- a5 “s ®o
©r
2}
i 169 169 s
0
8C RC sC RC sC RC
L Lo fe] (%Y} PTHOR

Figure 3: Effect of relaxing the consistency model.

latency. The gains are large in MP3D and PTHOR since the write-
miss ime constitutes a large portion of the execution time under
SC (35% and 20%. respectively), while the gain is small in LU due
to the relatively small write-miss time under SC (7%).

The pipelining of writes under RC provides another way in which
RC can outperform SC. If there is a release operation (e.g., unlock)
behind several writes in the write buffer, then a remote processor
rying to do an acquire (e.g., lock on the same variable) can observe
the release sooner, thus spinning for a shorter amount of time. In-
deed, Figure 3 shows that synchronization tries do decrease under
RC. Overall. the release consistency model provides a speedup over
sequential consisiency of about 1.5 for MP3D, 1.1 for LU, and 1.4
for PTHOR.

While relaxing the memory consistency model effectively hides
the latency of write accesses, the latency of read misses still re-
mains. This is partly due to the fact that a processor with blocking
reads does not allow a read miss to be overiapped with future com-
putation and memory accesses. In light of the fact that read miss
umes consutule a large portion of the execution ume (especially
when the wrile miss time is removed), there is still room for large
performance gains for techniques that can hide this latency. Indeed,
the prefetching and muluple context techniques discussed in the
next two sections attain most of their benefit by tackling the latency
of reads.

5 Prefetching

Although release consistency hides much of the latency of write
misses through buffering and pipelining, it stll suffers during read
misses when reads are blocking. These remaining misses can often
be anticipated through knowledge of an application’s reference be-
havior. Prefetching uses this knowledge to move data close to the
processor before it is actually needed.

Prefetching can be classified based on whether it is binding or
non-binding, and whether it is controlled by hardware or sofrware.
With binding prefetching, the value of a later reference (e.g., a
register load) is bound at the time when the prefetch completes.
This places restrictions on when a binding prefeich can be issued,
since the value will become stale if another processor modifies the
same location during the interval between prefeich and reference.
Binding prefetching studies done by Lee [18] reported significant
performance loss due to such limitations. In contrast, with non-
binding prefetching the data is brought close to the processor, but
remains visible to the cache coherence protocol to keep it consistent
until the process .- . read Hardwarecontrolled
prefetching includes schemes such as long cache lines and instruc-
tion look-ahead [17]. The effectiveness of long cache lines is Lim-
ited by the reduced spatial locality in multiprocessor applications
(7, 29], while instruction look-ahead is limited by branches and the

finite look-ahead buffer size. With softrware-controlled prefetching,
explicit prefeich instructions are issued. Software control allows the
prefetching to be done selectively (thus reducing bandwidth requure-
ments) and extends the possible interval between prefetch issue and
actual reference, which is very imporiant when latencies are large.
The disadvantages of software control include the extra instruction
overhead to generate the prefetches as well as the need for sopt.st-
cated software intervention. In this study, we consider non-binding
software-controlled prefetching [22].

The benefits due to prefetching come from several sources. The
most obvious benefit occurs when a prefetch is 1ssued early enough
that the line is already in the cache by the ume 1 1is referenced.
However, prefeiching can improve performance even when this is
not possible. When muluple prefetches are issued back-to-back. the
latency of all but the first prefetched reference can be hidden due
1o the pipelining of the memory accesses. Prefetching offers an-
other benefit in multiprocessors that use an ownership-based cache
coherence protocol [4]. If a line is to be modified. prefetchung 1t
directly with ownership can significantly reduce the wnte latencies
and the ensuing network traffic for obtaining ownershup. Network
traffic is reduced in read-modifv-write situations, since prefetching
with ownership avoids first fetching a read-shared copy.

5.1 Prefetching Implementation and Assumptions

In our model, a prefetch instruction is similar to a write in that it
is issued to a prefetch buffer (which is 1dentical to a write buffer,
except that it only handles prefetch reguests) and does not block
the processor. The reason for having a separate prefeich buffer is
to avoid delaying prefetch requests unnecessarily benind wries in
the write buffer [22]. We model a prefetch buffer tha: is 16 entries
deep. Once the prefetch reaches the head of the prefetch buffer,
the secondary cache is checked to see whether the ine is already
present. If so, the prefeich is discarded. Otherwise the prefeich is
issued onto the bus, where it 1s treated like any norma memory
request. When the prefetch response rerums to the processor. it is
Placed in both the secondary and primary caches. If the processor
1s executing when this cache fill begins. 11 is stalied for four cvcles
(since the cache line size is four words 10 model the effect that
no loads or stores can be executed whiie the cache is busy. If a
processor references a location it has prefetched belore the resuit
has returned, the reference reques: 1s combined with the prefetch
request so that a duplicaie set of messages is not sent ou! and so
that the reference completes as soon as the prefetch result retums.
Since we did not want to be constrained by the limits of existing
compiler technology to automatically add prefetchung. and because
such a compiler was not available to us, prefetches were introduced
manually at the source level of each application through macro
statements. These macros covered both read and read-exclusive
prefewches, as well as single cache line and block prefeiches. A
read prefetch brings data into the cache in a read-shared mode,
while a read-exclusive prefetch also acquires exciusive ownership
of the line, enabling a write to that locaton to compiete quickly.

5.2 Prefetching Results

We begin with a description of how prefetching was inserted into
each application, and then discuss the results for both sequential
and release consistency.

MP3D: Most of the time is spent in a loop where each processor
takes a particle and moves it through one time step. The over-
whelming majority of cache misses are caused by references
to two structures within this loop: (i: the parucle which is be-
ing moved (34% of misses), and (ii . the space cell where the
particle resides (50%). Parucies are stancally assigned to pro-
cessors and are allocated to the corresponding iocal memones,

Page §

100.0 100.0
; ‘W# 4. 59 2
k 4 68
c 00p -
2
2 8
]
X 10 s
29

3 e
g " = e
2 © 4 W 20

% 184

20

%0 260
10 16.9 16.9
0

643
61.6 . 123

2
'm
6.0 ®D

BB preterch Overhasd
. Sync. ime
5 Werse Mes Time
Resd Mise Time
Busy Nrme

T2
[X 15
- 27
[B
49 0
349
149 149

'sz'l
16.0

3
1460

Normal Prefetch
sC

Normra! Pretetch
RC

Norrral Prefetch
SC

MP3D L

Norrra| Prefetch
RC

Norma! Prefetch
sC

Norrmal Preteten
RC
PTHOR

Figure 4: Effect of prefewching.

while space cells are uniformly allocated since they are shared
among processors.

Since a particle must be referenced to determine the space cell
it occupies, we prefeich a particle record two iterations before
its turn to be moved. In the iteration following the prefeich, the
particle is read, and the associated space cell is determined and
prefetched. As a result, when it 1s time for the particle to be
moved. both the particle and space cell records are available
in the cache. We also prefetch several other references that
occur at ume step boundaries, such tha: a total of 87% of all
misses are prefetched (we will refer to this as the coverage
factor). Read-exclusive prefeiches are used since the objects
are modified during each iterauon.
LU: The matrix columns are staticallv assigned to the processors in
an interleaved manner. and are allocated to the corresponding
local memories. The main computation done by each processor
consists of reading a pivot column once it 1s produced, and
applying the pivot column to each column to its right that the
processor owns. There are three primary sources of misses
in LU: (i) the pivot column when it is read for the first time
(8%). (ii) the pivot column when it is replaced by a columnn it is
applied to and needs to be refetched (17%); and (ii) the owned
columns that the pivot column is applied to .649). Ths last
set of misses occurs because the combined size of the owned
columns is larger than the size of the cache.

Each time the pivot column is applied to an owned column,
we prefeich the pivot column in read-shared mode and the
owned column in read-exclusive mode. Although prefeiching
the pivot column each time causes redundant prefetches, it
reduces the misses when the pivot column is replaced from the
processor’s cache, resulting in a total coverage factor of 89%.
We found that it is better 10 evenly distribute the issue of
prefeiches throughout the computation rather than prefetching
an entire column in a single burst, in order to avoid hot-spotting
problems.

PTHOR: In the main computational loop. each processor picks up
an acuivated logic element, computes any changes to the ele-
ment’s outputs, and schedules new input everts for elements
that are affected by the changes. Omne of the main data struc-
tures in the program is the elemens record, which stores all
information about the rype and state of the eiement. Several
ficlds in the record are pointers to linked lists. or are pointers
to arrays that in turmn point to linked lists. Prefetching is com-
plicated by the presence of linked lists, since o prefetch a lst
it 1s necessary o dereference each pointer along the way.

We first reorganized the element record and grouped entries
based on whether they were likely to be mod:fed, likely to be

read but not modified, or likely not to be referenced. Whenever
a processor picks an element from a task queue, we prefetch the
element record entries accordingly. In addiuon, we prefetch the
first several levels of the more imporntant linked bsts. Due to
the complex control structure of the application. it is difficult to
determine where the misses occur. Despite the aid of profiling
markers that helped determine which sections of code were
generaung musses, we were only able to increase the coverage
factor to 56%.

The results of the prefetching expenments are shown in Figure
4 Nouce that a new sectior has been added to the execution time
bar to account for prefetching overhead. Thus includes any extra in-
strucuons executed te do prefetching (e.g.. evaiuation of conditonal
stalements that help decide whether to prefetch or not, instructions
to do address computation, and the prefetch instruction iself). any
time for whuch issuing a prefetch stalls the processor due to a full
prefetch buffer, and any stall ume due to the priman cache being
filled with a prefetched line.

For sequental cons:stency we see that most of the benefit comes
from reduced read laiencies. and tha: this more than offsets the
added prefewch overhead. While read-exclusive prefeiching effec-
tively reduces write iatencies for MP3D, 11 offers htle or no im-
provement for PTHOR (since only a small racuoen of prefeiches
are read-exclusive) and LU isince wnie latencies are alreadv small
because owned columns are allocated to iocal memory). Prefetch
overhead is substanual in the case of LU since there is very lhrle
computation between references, causing the prefetch generanon in-
structions to be a large fraction of total instructuons. The overhead
due to pnmary cache fills 1s much less of a problem. The main
difference we see when prefelching 1s combined with release con-
sistency is that the wnie latency has already been elimunated, so the
benefits come strictly through reduced read latency.

The benefits of prefetching are limited by several factors. First,
inserting the prefetches can be difficult. Thus was especially true
for PTHOR. The difaculty 1s both identifving the references that
need to be prefetched and scheduling the prefetches far enough in
advance to effectively hide laiwrncy. We are currently working on
compiler technology to automate this process. Secondly, even if a
reference is prefetched far enough in advance. cache interference
may cause it to be knocked out of the cache before 1t can be refer-
enced. This interference can be either self-interference in the form
of replacements or extzemnal interference caused by invalidauons. Fi-
nally, the overhead of adding prefeiches can potenually offset much
of the gain that is realized through reduced latencies, as «¢ see in
the case of LU.

The advantage of prefetching is that sigruficant gains can be
achieved by inserting only a handful of prefewches when the ac-
cess patterns are reguiar an¢ predictable. For MP3D, adding only

Page 6

16 Lines to the source code resulted in speedups of 1.60 and 1.47
under SC and RC, respectively. Another great advantage in terms of
hardware cost is that prefetching can be implemenied using existing
commercial processors.

6 Multiple-Context Processors

Although prefetching is useful for many applications, it requres ex-
plicit programmer or compiler intervention. Processors with mult-
ple hardware contexts [3, 13, 14, 27] do not have this disadvantage.
They make use of increased concurrency to hide latency. Each
processor has several processes assigned to 1t. which are kept as
hardware contexts. When the context that is currently running en-
counters a long-latency operaton, it is switched out and another
context is otarted. In this manner the memory latency of one con-
text can be hidden with computation of another context. Given
processor caches. the interval between long-latency operations (i.e.,
cache nusses) bec »mes fairly large, allowing just a handful of hard-
ware contexts to hide most of the latency {2, 2%, 30). This is in
contrast to the early muluplecontext processors such as the HEP
[27]. where context switches occurred on every cycle.

The performance gain to be expected from muluple context pro-
cessors depends on several factors. First, there is the number of
contexts. With more contexts available, we are less likely to have
a completely idle processor due to running out of ready-to-run con-
texts. On the other hand there mught not be enough parallelism 1n the
application to suppont many contexts per processor. Secondly, the:
is the context switch overhead. If the overhead is a sizeable
uon of the typical run lengths (time berween musses) encount. .,
a lot of time will be wasted with the switching of contexts. Shorer
context swiich times require a more complex processor. Thurdly,
the perforinance depends on the applicanon behavior. Under ideal
conditions where latencies are constant and rmusses occur at regular
intervals, a multiple context processor can achieve a high utiliza-
torn. However, with real apphcatons, lalencies car vary depending
on where the data resides and what state it 1s in. At the same ume
masses may be clusiered. Both of these will make 1 impossible to
completely overlap computation of one context with memory ac-
cesses of the other contexts. Hence the processor utilization will
not reach its full potential. Lasidy, multiple contexts themselves
will affect the performance of the memory subsysiem. The differ-
ent contexts share a singie processor cache and can interfere with
each other, both constructively and destructively. Also. just as 1s e
case with relaxed consistency and prefetching, the memory system
is more heavily loaded by multiple contexis, and thus laiencies may
increase.

We presented a preliminary investigation of muluple-context pro-
cessors in a previous study [30]. More recently, there have also been
two analytical evaluations of muluple contexts [2. 25]. In this study
we prescnt a more detailed simulation evaluation of *he performance
of multiplecontext processors, and we also consider the combined
effect with other latency-hiding techniques. We use processors with
two and four contexts. We do not consider more contexts per proces-
sor because sixteen 4-context puucessors require 64 paralle] threads
and rome of our applicanons do not get very good speedup bevond
this point. We use two different context switch overheads: 4 and
16 cycles. A four<ycle context switch overhead corresponds to
flushing/loading a typical RISC pipeline when switching to the new
instrucuon stream. This type of processor would require muluple
regisier sets to allow fast switching between them. An overhead of
sixieen cycles corresponds 10 a less aggressive implementation. In
our study, we include addiuonal buffers to avoid thrashing when two
coniexts Iy to re.. “wo mereny Lines - - an to the same cache
line. Without the buffers, the two contexts could continually knock
the other context’s line outl of the cache, causing a never-ending
stream of read misses.

6.1 Results with Multiple-Context Processors

We start our investigation of muluple coniexts with an evaluation of
their benefit under sequential consistency. Later we will examine
the combined benefit when the consistency model 1s relaxed and
prefetching is added.

Refer to Figure 5 for the results under sequenual consistency
We show results for single<ontext processors as well as 2- and
4-context processors with context switching penalties of 4 and 16
cycles. The height of each bar represents the execution ume of the
application under the given scheme. Each bar is broken down wintc
the following components: busy time which represents actual work
being done by the processor, swichung time incurred when switch-
ing from one context to the next. all idle ime which is the 1o1al
time when all contexts are idle waiing for a reference 1o compiete,
and no switch time which represents tme when the current context
is idle but 1s not switched out. Most of the laner idle ume is due
to the fact that the processor is locked out of the primary cache
while fill operations of other contexts complete. Under sequential
consistency. some of the no switch idle time is due 1o write hits in
the secondary cache, which stall the processor for two cycles.

MP3D benefits greatly from the use of multiple contexts (see
the top of Figure 5). The median run lengths are about 11 cvcles
long, and the average miss latencies are 50-70 cycles long. With a
context switch overhead of four cycles. we expect to need about 5
contexts 1o completely hide the miss latencies. With two contexts
we see some reduction in a/! idle ume and with four contexts an
additional portion of this idle time is eliminated. However, with
muluple contexts we now have addinional idle time in the form of
coniext swiich overhead. This ume is especially significant when
the context switch overhead is 16 cvcies. It is interesting to note that
there 1s very litle performance improvement gomng from a swilch
penalty of 16 cycles to one of 4 cycles with 2 contexts. The context
switch time saved simply shows up as addiuonal all idle time.

The behavior of LU (middle of Figure §) is completely dominated
by cache interference. With a single context. the read and write
hit rates are 66% and 97% respecuvely. With two contexis they
deteriorate to 56% and 38%. and with 4 contexts thev are down
10 50% and 16%. These additional misses lead to more context
swilches and more time wasted on context switching. With 16 cvcle
context switck ~verhead, performance gets worse as more contexts
are adde . Fven though some of the latencies are hidden. the time
wasleu On context switches dominates. With the 4 cycle context
switch overhead, some gains are possible. The median run lengths
are 6 cycles long, and the average muss latencies are 20-27 cvcles
long. The miss latencies are low because a high proportion of them
are due to the owned columns of the matrix. which are allocated
frem the Jocal portion of shared memory.

PTHOR (bottorn of Figure S) shows another interesting effect.
There is not enough parallelism available in the application to
achieve good speedup with a large number of processors or con-
texts. So even though the run lengths and latencies are favorable
(they are 7 and 6080 cycies respectuvely), the gains achieved with
two contexts are small. Four contexts actually do worse than two,
no marter what the context switch overhead is. There simply s not
enough parallelism available to provide useful work for four con-
texts per processor. The additional contexts spend most of their time
busy-waiting on an empty task queue. During this time they hold
up the useful work being done by the other contexts that did manage
to find a task. The additional instruction cycles used for spinning
on the task queue are reflected in the graphs as extra busy ume.
We note that when we run PTHOR with four processors instead of
sixteen, we find that multiple contexts achieve much greater gains:
four context-processors run about twice as fast as single-context
processors.

The conclusion from the results of our experiments with multiple
contexts under sequential consistency 1s that multiple ontexts can

Page 7

t 100

E

e o

2

E’ 80

= 70

T s

i

§ .

z 4 ‘
% 179 194
L | KV K
10 169 169 169 169
[
Single Ctxt 2 Cxts 4 Ctxis 2Ctxs 4 CUts

Swhich Latency 16 Switch Latency 4
MP3D Performance with Multiple Contexts (under SC)

E 150 - 141.4 No Switch
W !

g 10F - Al idle
5 130 Hl switching
T 120r- Busy
] 104
= 100t
3 9r
2 eof
[}
g 70§ [¥
; :_ n9

3; .1;.: .n.o

20}

1oL 26.0 260 260 26.0 26.0

o

Single Ctxt 2Ctds 4 Cixts 2Ctxts 4 Cuxts

Switch Latency 16 Switch Latency 4
LU Performance with Multiple Contexts (under SC)

1204

g 120} 6.3 No Switch
= a0 All idle
g 129 Ml swiiching
-]
2 100
5
3§ 90
o
w80
°
§ 70 633
3
g 60
o 50
2

40

30

20 364

104 16.0 n3

0

Single Ctxt 2Ctxts 4 Ctxts 2Ctxts 4 Cixts

Switch Latancy 16 Switch Latency 4

PTHOR Performance with Multiple Contexts (under SC)

Figure 5. Effect of muluple contexts.

increase performance significantly when the run length to latency
ratio is favorable. However, enough parallelism must be available
in the application to keep the additional contexts busy. We also note
that destructive interference of the contexts in the processor cache
can undo any gains achieved. Interference is more of a problem with
multiple contexts than with prefetching because muluple working
sets interfere with each other in the same cache. The smaller the
number of cycles required for context switching, the lower the total
overhead due to multiple contexts. A context switch overhead of
16 cycles introduces significant overhead, whereas the overhead is
much more reasonable with a 4-cycle swich penalty. The typical
run lengths and latencies encountered suggest that a small number
of contexts (such as 4) is sufficient to achieve most of the latency
hiding benefits.

6.2 Effect of Combining other Schemes with Multiple
Contexts

We have seen that muluple contexts with sequential consistency can
increase performance substanually under favorable circumstances.
An interesting question is whether multiple contexts can gain any
extra performance when combined with relaxed consistency mod-
els. The left and middle sectuons of the graphs in Figure 6 show the
performance of multiple contexts with SC and RC, respectively. We
only show results for a context-switch overhead of 4 cvcles. The
major difference between release consistency and sequental con-
sistency 1s that write rmusses are no longer considered long latency
operations from the processor ‘s perspecuve, since writes are simply
put into the wnite buffer. We thus find thar median run lengths be-
tween switches have increased (from 11 to 22 cycles for MP3D and
from 6 to 14 cycles for LU, and that fewer contexts are required
to eliminate most of the remaining read miss latencies. As a result,
the gains achieved with four contexis over two contexts are also
diminished. As is apparent from the resulis, there is some benefit
from relaxing the consistency model with multiple contexts. For
the 4-context case, performance improved by a factor of 1.32 for
MP3D, 1.24 for LU, and 1.17 for PTHOR when going from SC to
RC.

Finally, let us consider the combined effect of multiple contexts
and prefetching (see the right portions of the graphs of Figure 6).
In general. prefetching and mulnple contexts aim to hide the same
idle ime—that caused by long latency read and write misses. We
thus expect the gain of prefeiching with multiple contexts to be
less than with single contexts. This is indeed the case. Prefetching
improves performance only i the cases where multiple contexts
have not been able 10 hide most of the latency. For example. wath
MP3D under release consistency. there is a significant performance
improvement when gong from two to four contexts (top of Figure
6). A similar (albeit somewthar smaller) gain can be achieved by
applving prefetching to the two-context case. However. combining
prefeiching with four contexts vields worse performance. Here we
are paying the price of prefeiching overhead. but are not reducing
the latency. LU and PTHOR show similar trends.

Although prefetching and multiple contexts each aim to reduce
the same latency, there are scme distinguishung features. The big
advantage of prefewching is that it does not require a special pro-
cesear. Also, many more accesses can be outstanding at any given
time, thus allowing their latencies to be overlapped. With prefetch-
ing, each processor can issue an essentially unlimited number of
prefetch requests. Muluple contexts, on the other hand, are limited
by the total number of contexis. which is expected to be a small
number. The advantage of multple contexts is thar they can handle
very irregular access patterns which cannot be prefetched efficiently.
In addition, multiple contexts do not require software support.

In our study. prefewching was added without any regard to the
effect it might have on multupie contexts. For example, prefeiches
are added in the single contex: case even if they cannot be issued
early enough to completely hide the latency. With multiple contexts,
the benefit of such parnal latency hiding is diminished because a
miss will occur, riggering a context switch. If the multiple contexts
would have hidden the miss laiency anyway, prefetch overhead has
just been added without any benefit. This effect becomes more
significant as the number of contexts is increased. Multiple contexts
thus add another interesting dimension to the guestion of when to
prefetch.

In summary, release consistency helps multiple contexts because
it eliminates writes as long laiency operations, thus increasing run
lengths and allowing the remairung latency to be hidden with fewer
contexts. The benefit of adding prefeiching to multiple contexts is
small, and may even be neganve, especially when linle latency is
left to hide. Inserting prefetches with more awareness of thewr effect
on the performance of multiple contexts may achieve better results.

Page 8

Normelized Execution Time
8

B 8883388

Y
o

¥
19.6
4.8
169

Single 2Ctxts 4 Ctxts

No Prefetch with SC

Single 2Ctxts 4 Ctxte
No Pretetch with RC

Single 2 Ctxts 4 Ctxts

Prefetch with AC

MP30 Performance

g 100 B Prefetch Overhosd
[~ 925 No Switch
g 90 All idle
Switching

E 80 Busy
g T
°
é 60
a

50
E
2

30

b+ R . :

wol 26.0 26.0 2.0 26.0 26.0 26.0 26.0 26.0 26.0

0

Single 2Cutxts 4 Ctxts Single 2Ctxts 4 Ctxts Single 2Ctxts 4 Ctxts
No Prefetch with SC No Prefetch with RC Prefetch with RC
LU Performance

£ 100
: 20 .21
2
3 80
&
g ™™
3 e 59.1
T s

40

30

® S

24
10 2 wg 198
[

Single 2Ctxts 4 Ctxts

No Prefetch with SC

Single 2Ctxte 4 Ctxts
No Prefetch with RC

Single 2Ctrts 4 Ctxts
Prefetch with RC

PTHOR Performance

Figure 6. Effect of combining the schemes (multiple-context schemes have a 4-cycle switch latency).

7 Concluding Remarks

While several latency hiding techniques have been proposed in the
past, a study evaluating the relative performance benefits of these
techniques and their combinations had been lacking. In this pa-
per. we have presented such an evaluation for four techniques—
coherent caches. relav~d memory consisency, prefetching, and mul-
tiple contexts—.. L I arciatectural assumptions and
benchmarks. As expcctcd the la:gcst single improvement in run-
time, a factor of 2.2 to 2.7. came from coherent caches. Relaxing
the consistency model provided additional performance gains of 1.1

to 1.5, arising mainly from the hiding of write latencies. Similar
to the gain from caches. this gain is automatic as long as programs
use explicit synchronizauon. Since the relaxed models hide laten-
cies by allowing multiple outstanding references, the main hard-
ware requirement (in addition 10 coherent caches) is lock-up free
caches. Lock-up free caches are also necessary for prefetching and
for multiple-context processors, and thus form a universal require-
ment for latency hiding techniques.

As intended, prefetching was very successful in reducing the stalls
due to read latencies (factor of 2.4 for MP3D, 2.7 for LU, and
1.4 for PTHOR). Prefetching was less effective in reducing write

Page 9

latency under the strict consistency model, but combined well with
the relaxed consistency model to elimunate both types of latency.
The overall speedups were 2.3 for MP3D, 1.6 for LU, and 1.6
for PTHOR. While prefetching has the drawback thar it requires
compiler or programmer intervention. a significant advantage is that
it requires no major hardware suppon beyond that needed by RC,
and it can easily be incorporated into systems built using existing
commercial microprocessors.

The multiple context approach, while requiring significant hard-
ware support, provided mixed results when the contexi-swich over-
head was 16 cycles. In cases where the concurrency was low (e.g.,
PTHOR! or where there was substanual cache interference (e.g..
LU, the use of muluple contexts made the performance worse. The
use of relaxed consistency helped mulupie context performance by
hiding write latencies and increasing the run lengths. Under an
aggressive implementation, with use of 4 contexts and a contexi-
switch overhead of 4 cvcles, the performance benefits were a factor
of 3.0 for MP3D, 1.7 for LU, and 1.3 for PTHOR. The interaction
of multiple contexts with prefeiching was shown to be complex.
Oftentimes the performance became worse when the two were com-
bined together, because the prefetch overheads were greater than the
additional latency that was hidden. To achieve beter results, it ap-
pears that the prefetching strategy must become more sensitive to
the presence of multiple contexts.

8 Acknowledgments

We thank the reviewers for their comments. This research was
supported by DARPA contract NOOO14-87-K-0828. Anoop Gupta
is parually supported by a NSF Presidential Young Investigator
Award with matching funds from Sumitomo. Tandem. and TRW.
Wolf-Dietrich Weber is partially supporied by IBM and Kourosh
Gharachorloo is parnally supported by Texas Instruments.

References

[11 S. Adve and M. Hill. Weak ordering - A new definition. In
Proc. Ins. Symp. Comput. Arch.. pages 2-14, May 1990.

[2] A. Agarwal. Performance tradeoffs in muluthreaded proces-
sors. MIT VLSI Memo 89-566. Lab. for Comput. Sci., Sub-
mitted for publication, September 1989.

[3] A. Agarwal. B.-H. Lim, D. Kranz. and J. Kubiatowicz. April:
A processor architecture for muluprocessing. In Proc. Int.
Symp. Comput. Arch., pages 104-114, May 1990.

{4] J. Archibald and J.-L. Baer. Cache coherence protocols: Eval-
uation using a multiprocessor simu.ation model. ACM Trans.
Comput. Syst., 4(4):273-298, 1986.

(5] W. J. Dally. Wire efficient VLS] maltiprocessor communica-
tion networks. In Swnford Conference on Advanced Research
in VLSI, 1987,

(6] M. Dubois, C. Scheurich, and F. Briggs. Memory access
buffering in multprocessors. In Proc. In. Svmp. Comput.
Arch., pages 434442, June 1986.

[7] S. J. Eggers and R. H. Katz. Evaluating the performance of
fow snooping cache coherency protocols. In Proc. Int. Symp.
Compui. Arch., pages 2-15, May 1989.

[8) K. Gharachotloo, A. Gupta, and J. Hennessy. Performance
evaluation of memory consistency models for shared-memory
multiprocessors. In [nt. Conf. Arch. Support Prog. Lang. Oper.
Syst., April 1991.

[9] K. Gharachorloo D. Lenoski, J. Laudon, P. Gibbons, A. Gupta,
and J. Hennessy. Mcmory consistency and event ordering in

scalable shared-memory multiprocessors. In Proc. Ini. Symp.
Comput. Arch., pages 15-26, May 1990.

[10] S. R. Goldschmidt and H. Davis. Tango introduction and tu-
torial. Technical Report CSL-TR-90-410, Stanford University,
1990.

[11]). R. Goodman. Cache consistency and sequential consistency.
Technical Repont no. 61, SCi Commitiee, March 1989.

[12]) E. Gornish, E. Granston and A. Veidenbaum. Compiler-
directed data prefetching in multiprocessors with memory hi-
erarchies. In In1. Conf. Supercomputing, 1990.

[13] R. H. Halstead, Jr. and T. Fujita. MASA: A multithreaded pro-
cessor architecture for parallel symbolic computing. In Proc.
Int. Svmp. Comput. Arch., pages 443451, June 1988.

[14] R. A. lannucci. Toward a dataflow/von Neumann hybrid ar-
chitecture. In Proc. Int. Sxmp. Comput. Arch., pages 131-140,
June 1988.

[15) D. Kroft. Lockup-free instruction fetch/prefetch cache organi-
zation. In Proc. Int. Svmp. Comput. Arch., 1981.

[16] L. Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs. /EEE Trans. Comput.,
C-28(9):241-248, September 1979.

[17) R. L. Lee. The Effectiveness of Caches and Data Prefeich
Buffers in Large-Scale Shared Memory Multiprocessors. PhD
thesis, University of [llinois at Urbana-Champaign, May 1987.

(18] R. L. Lee, P-C. Yew, and D. H. Lawrie. Data prefetching
in shared memory multiprocessors. In Proc. Int. Conf. Paral.
Proc., pages 28-31, August 1987.

[19] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta. and J. Hen-
nessy. The directory-based cache coherence protocol for the
DASH multiprocessor. In Proc. Int. Symp. Comput. Arch., May
1990.

[20] E. Lusk, R. Overbeek. et al. Portable Programs for Parallel
Processors. Holt, Rinehant and Winston, Inc.. 1987,

(21] 1. D. McDonald and D. Baganoff. Vectorization of a particle
simulation method for hypersonic rarified flow. In AIAA Ther-
modvnamics, Plasmadvnamics and Lasers Conference, June
1688.

[22] T. Mowry and A. Gupta. Tolerating latency through software-
controlled prefetching in shared-memory multiprocessors. J.
Paral. Dist. Computing. 10 appear in June 1991.

{23} G.F. Pfister, W. C. Brantley. D. A. George, S. L. Harvey, W.J.
Kleinfelder, K. P. McAuliffe, E. A. Melion, V. A. Nonon, and
J. Weiss. The IBM research parallel processor prototype (RP3):
Introduction and architecture. In Proc. Int. Conf. Paral. Proc.,
pages 764-771, 1985.

[24] A. K. Ponterfield. Sofrware Methods for Improvement of Cache
Performance on Supercompuier Applications. PhD thesis, Rice
University, May 1989.

[25] R. H. Saavedra-Barrera, D. E. Culler, and T. von Eicken. Anal-
ysis of multithreaded architectures for parallel computing. In
ACM Symp. Paral. Alg. Arch., July 1990.

[26] G. E. Schmidt. The Butterfly parallel processor. In Proc. Ins.
Conf. Supercomputing, pages 362-365, 1987.

[27] B. J. Smith. Architecture and applications of the HEP multi-
processor computer systemn. SP/E, 298:241-248, 1981.

(28] L. Soule and A. Gupta. Parallel distributed-time logic simu-
lation. JEEE Design and Test of Computers, 6(6):32-48, De-
cember 1989.

[29] J. Torrellas, M. S. Lam, and J. L. Hennessy. Measurement,
analysis, and improvement of the cache behavior of shared

data in cache coherent multiprocessors. Technical Report CSL-
TR-90-412, Stanford University, Feb. 1990.

Page 10

(30] W.-D. Weber and A. Gupta. Exploring the benefits of multi-
ple hardware contexts in a multiprocessor architecture: Pre-
himinary results. In Proc. Int. Svmp. Comput. Arch.. pages
273-280. June 1989.

[31] A. W. Wilson, Jr. Hierarchical cache/bus architecture for
shared memory muluprocessors. In Proc. Int. Symp. Comput.
Arch., pages 244-252, June 1987.

Page 11

